Thermal contact and heat flux
A heating plate is heated up through a heat flux. Parts on top of this plate can exchange heat via contacts. This is shown in this example. A component is in direct contact and exchanges heat via heat conductivity. Another component is very close to the heat source and exchanges heat via a simplified heat convection and radiation formulation. Another component is located outside the contact range and does not exchange heat.
https://www.dynaexamples.com/thermal/thermalcontact-heatflux
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Thermal contact and heat flux
A heating plate is heated up through a heat flux. Parts on top of this plate can exchange heat via contacts. This is shown in this example. A component is in direct contact and exchanges heat via heat conductivity. Another component is very close to the heat source and exchanges heat via a simplified heat convection and radiation formulation. Another component is located outside the contact range and does not exchange heat.
*BOUNDARY_FLUX_SET *CONTACT_SURFACE_TO_SURFACE_THERMAL_ID *CONTROL_SOLUTION *CONTROL_TERMINATION *CONTROL_THERMAL_SOLVER *CONTROL_THERMAL_TIMESTEP *DATABASE_BINARY_D3PLOT *DATABASE_GLSTAT *DATABASE_MATSUM *DATABASE_TPRINT *DEFINE_CURVE *END *INCLUDE *INITIAL_TEMPERATURE_SET *KEYWORD *MAT_THERMAL_ISOTROPIC *PART *SECTION_SOLID *SET_PART_LIST *TITLE
*KEYWORD $ $=============================CONTROL DEFINITIONS ============================== $ *TITLE Thermal contact between heating plate and parts *CONTROL_SOLUTION $ thermal analysis $ soln nlq isnan lcint lcacc ncdcf 1 *CONTROL_THERMAL_SOLVER $ transient thermal analysis $ atype ptype solver cgtol gpt eqheat fwork sbc 1 1 11 $ msglvl maxitr abstol reltol omega tsf *CONTROL_THERMAL_TIMESTEP $ ts tip its tmin tmax dtemp tscp lcts 1 0.1 *CONTROL_TERMINATION $ endtim endcyc dtmin endeng endmas nosol 10 $ $================================ OUTPUTDATA =================================== $ *DATABASE_BINARY_D3PLOT $ dt 0.1 *DATABASE_GLSTAT $ dt 0.1 *DATABASE_MATSUM $ dt 0.1 *DATABASE_TPRINT $ dt 0.1 $ $============================== PART DEFINITIONS =============================== $ *PART $ title heating_plate $ pid secid mid eosid hgid grav adpopt tmid 1 1 0 0 0 0 0 2 *PART $ title cube_contact $ pid secid mid eosid hgid grav adpopt tmid 2 1 0 0 0 0 0 1 *PART $ title cube_close $ pid secid mid eosid hgid grav adpopt tmid 3 1 0 0 0 0 0 1 *PART $ title cube_far $ pid secid mid eosid hgid grav adpopt tmid 4 1 0 0 0 0 0 1 $ $============================= SECTION PROPERTIES ============================== $ *SECTION_SOLID $ secid elform 1 -1 $ $======================== THERMAL MATERIAL PROPERTIES ========================== $ *MAT_THERMAL_ISOTROPIC $ zinc $ tmid tro tgrlc tgmult tlat hlat 1 7.13e-9 $ hc tc 3.88e8 110.0 *MAT_THERMAL_ISOTROPIC $ steel $ tmid tro tgrlc tgmult tlat hlat 2 7.85e-9 $ hc tc 4.60e8 40.0 $ $=======================NODE/ELEMENT/SET/SEGMENT DEFINTIONS ==================== $ *INCLUDE 06_heating_plate_parts.k $ $*SET_SEGMENT_TITLE segments_plate_bottom sid 1 $ *SET_PART_LIST $ sid 5 $ pid1 pid2 pid3 2 3 4 $ $=========================== CONTACT DEFINITIONS =============================== $ *CONTACT_SURFACE_TO_SURFACE_THERMAL_ID 1,contact $ ssid msid sstyp mstyp sboxid mboxid spr mpr 5 1 2 3 $ fs fd dc vc vdc penchk bt dt $ sfs sfm sst mst sfst sfmt fsf vsf $ k frad h0 lmin lmax ftoslv 0.1 6.3E-12 50.0 0.01 2.0 $ frad based on emissivity e1=e2=0.2 $==================== THERMAL BOUNDARY and INITIAL CONDITIONS ================== $ *INITIAL_TEMPERATURE_SET $ nid/sid temp loc 0 293.15 *BOUNDARY_FLUX_SET $ ssid 1 $ lcid mlc1 mlc2 mlc3 mlc4 loc nhisv 101 -1.0 -1.0 -1.0 -1.0 *DEFINE_CURVE $ lcid sidr sfa sfo offa offo dattyp 101 0 1 1 0 0 0 $ time , heat flux 0.0,0.0 1.0,200.0 11.0,200.0 $ *END