Springback I
A doorbeam subassembly is deformed by a rigid pole. Shell elements are used throughout, and nodal rigid bodies are used to spotweld the components of the doorbeam. The pole is displaced to deform the doorbeam, then retracted to evaluate springback.
https://www.dynaexamples.com/implicit/basic-examples/springback-i
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Springback I
A doorbeam subassembly is deformed by a rigid pole. Shell elements are used throughout, and nodal rigid bodies are used to spotweld the components of the doorbeam. The pole is displaced to deform the doorbeam, then retracted to evaluate springback.
LS-DYNA Implicit Workshop Problem #5: Door Beam Objective * Learn to perform a spring back simulation using an entirely static implicit analysis. * Learn to specify key points during the solution which must be reached exactly. * Learn about the available displacement convergence norm options. Problem Description A doorbeam subassembly is deformed by a rigid pole. Shell elements are used throughout, and nodal rigid bodies are used to spotweld the components of the doorbeam. The pole is displaced to deform the doorbeam, then retracted to evaluate springback. Input Filename: doorbeam.k Procedure Copy the input file to your local directory. Using an editor, view the input file and answer the following questions: 1. What type of contact interface is selected? Why? 2. Why is the doorbeam chosen as the slave side? Run the simulation and observe the convergence behavior. Activate the flag IGAPF=2 on optional card C in the *CONTACT_ keyword. Repeat the simulation. 3. Which gap flag produces the best convergence behavior? Postprocess the results, and plot the slave interface force. Save the interface force curve as file curve1. 4. What is the strategy for solving the springback problem? How is the applied load removed? 5. At what time is the full load applied? (HINT: Check the input file.) 6. Why are the maximum reaction force and springback predictions from this simulation misleading? Define a key point at time=1.0 using the *CONTROL_IMPLICIT_AUTO keyword. Use a maximum step size of 0.05 throughout the entire simulation. Repeat the simulation, and plot the new interface force curve. Save this curve as file curve2. Compare these results to curve1. 7. Is the peak load computed at the correct time? 8. Why is the force-deflection behavior not smooth? Select the alternate displacement tolerance scheme using DNORM=1 on *CONTROL_IMPLICIT_SOLUTION, and repeat the simulation. 9. Does the alternative displacement tolerance become ( ) more or ( ) less strict when total displacements are large, as they are at the end of this problem? 10. Is the force-deflection curve more smooth? Why? 11. What is the springback deflection at the center of the doorbeam?
*BOUNDARY_PRESCRIBED_MOTION_RIGID *CONSTRAINED_NODAL_RIGID_BODY *CONTACT_NODES_TO_SURFACE *CONTROL_CONTACT *CONTROL_IMPLICIT_AUTO *CONTROL_IMPLICIT_GENERAL *CONTROL_IMPLICIT_SOLUTION *CONTROL_IMPLICIT_SOLVER *CONTROL_TERMINATION *DATABASE_BINARY_D3PLOT *DATABASE_RCFORC $*DEFINE_CURVE *DEFINE_CURVE *ELEMENT_SHELL *END *KEYWORD *MAT_PIECEWISE_LINEAR_PLASTICITY *MAT_RIGID *NODE *PART *SECTION_SHELL *SET_NODE_LIST *TITLE
*KEYWORD *TITLE static implicit door beam, 150 mm $ *CONTROL_TERMINATION 1.10000 $ $ --------------------------------------------------------------- $ *CONTROL_IMPLICIT_GENERAL $ imflag dt0 iefs nstepsb igso 1 0.010 0 0 1 $ *CONTROL_IMPLICIT_SOLUTION $ nlsolvr ilimit maxref dctol ectol rctol lstol 0 0 0 0.000 0.00 0 0 $ dnorm divflag inistif nlprt 0 0 0 0 $ 1 0 0 0 $ *CONTROL_IMPLICIT_SOLVER $ lsolvr prntflg negeig 0 0 0 $ *CONTROL_IMPLICIT_AUTO $ iauto iteopt itewin dtmin dtmax 1 200 0 0.0 0.05 $ 1 200 0 0.0 -9.0 $ $*DEFINE_CURVE $ 9 $ 0.0, 0.050 $ 1.0, 0.050 $ 2.0, 0.050 $ $ --------------------------------------------------------------- $ *DATABASE_BINARY_D3PLOT 0.0001000 $ *DATABASE_RCFORC 0.0001000 $ $ --------------------------------------------------------------- $ *MAT_PIECEWISE_LINEAR_PLASTICITY 2 7.83500-6 200.00000 0.2800000 0.2067000 0.0000000 5.00000+9 0.0000000 0.1700000 4.0000000 0 0 0.0000000 0.0230000 0.0940000 0.1380000 0.1510000 0.3010000 0.7010000 0.9010000 0.2070000 0.2580000 0.3330000 0.3610000 0.3910000 0.4390000 0.5060000 0.5280000 *MAT_RIGID 4 7.83500-6 200.00000 0.2800000 0.0000000 0.0000000 0.0000000 1.0000000 6.0000000 7.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 *SECTION_SHELL 8 16 0.0000000 5.0000000 0.0000000 0.0000000 0 3.0000000 3.0000000 3.0000000 3.0000000 0.0000000 *SECTION_SHELL 4 16 0.0000000 5.0000000 0.0000000 0.0000000 0 3.0000000 3.0000000 3.0000000 3.0000000 0.0000000 *PART BRKT 48 8 2 0 0 0 0 0 *PART BRKT2 52 8 2 0 0 0 0 0 *PART DOORBEAM 56 8 2 0 0 0 0 0 *PART 4 4 4 0 0 0 0 0 $ $ --------------------------------------------------------------- $ *BOUNDARY_PRESCRIBED_MOTION_RIGID 4 2 2 1 1.0000000 0 0.0000000 0.0000000 $ *DEFINE_CURVE 1 0.00000000E+00 0.00000000E+00 1.00000000E+00 1.50000000E+02 2.00000000E+00 0.00000000E+00 $ $ --------------------------------------------------------------- $ *CONTROL_CONTACT 0.1000000 0.0000000 0 1 0 0 0 0 0 0 0 0.0000000 0 0 0 $ *CONTACT_NODES_TO_SURFACE 56 4 3 3 0 0 1 1 0.2000000 0.2000000 0.0000000 0.0000000 0.0000000 1 0.0000000 1.0100000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 $ $ optional card A $ soft 0 $ $ optional card B $ penmax thkopt shlthk snlog 0.0 0 0 0 $ $ optional card C $ igapf 1=sticky (DEFAULT), 2=no-stick 0 $ 2 $ $ --------------------------------------------------------------- $ *CONSTRAINED_NODAL_RIGID_BODY 3 0 *SET_NODE_LIST 3 77041 77045 77049 77230 77231 77232 *CONSTRAINED_NODAL_RIGID_BODY 4 0 *SET_NODE_LIST 4 77039 77043 77047 77204 77205 77207 77208 77213 *CONSTRAINED_NODAL_RIGID_BODY 5 0 *SET_NODE_LIST 5 76945 76946 76961 77261 77262 77263 *CONSTRAINED_NODAL_RIGID_BODY 6 0 *SET_NODE_LIST 6 76937 76940 76955 77243 77244 77245 77246 77247 $ $ --------------------------------------------------------------- $ *END