Section
A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database.
https://www.dynaexamples.com/implicit/basic-examples/section
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Section
A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database.
LS-DYNA Implicit Workshop Problem #9: Ellipsoidal Dome Objectives * Learn the behavior of different element formulations in static implicit simulations. * Learn how to minimize hourglass problems. Problem Description A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database. Input Filename: ellipse.k Procedure Copy the input file to your local directory. Using an editor, view the input file and answer the following questions: 1. What is the maximum value of the applied load? 2. How many load steps are used? 3. What shell element formulation is used? 4. What hourglass control type is used? Run the simulation, and postprocess the results (Note: NODFOR file contains reaction forces at constrained base nodes.) 5. What happens? 6. total reaction force: center displacement: Repeat the simulation using the S/R Hughes-Liu shell (ELFORM=6), and postprocess the results. 7. total reaction force: center displacement: Repeat the simulation using the Fast Fully Integrated shell (ELFORM=16), and postprocess the results. 8. total reaction force: center displacement: 9. What conclusion can you draw about the effect of hourglass deformation on overall structural stiffness for this problem? Concentrated applied loads are often responsible for initiating hourglass deformation. Edit the input deck and replace the single concentrated nodal load with pressure acting on the adjacent segments (Hint: Helpful keywords are included in the comments inside the input deck). Repeat the simulation using the default shell. 10. What happens? 11. total reaction force: center displacement:
*CONTROL_HOURGLASS *CONTROL_IMPLICIT_AUTO *CONTROL_IMPLICIT_DYNAMICS *CONTROL_IMPLICIT_GENERAL *CONTROL_IMPLICIT_SOLUTION *CONTROL_IMPLICIT_SOLVER *CONTROL_TERMINATION *DATABASE_BINARY_D3PLOT *DATABASE_EXTENT_BINARY *DATABASE_GLSTAT *DATABASE_NODAL_FORCE_GROUP *DATABASE_NODFOR $*DEFINE_CURVE *DEFINE_CURVE *ELEMENT_SHELL *END *KEYWORD *LOAD_NODE_POINT $*LOAD_SEGMENT *MAT_elastic *NODE *PART *SECTION_SHELL *SET_NODE_LIST *TITLE
*KEYWORD *TITLE PINCHED ELLIPSE $ $ A. Tabiei, March 99 $ units; mm, s, ton, N $ *CONTROL_TERMINATION 1.0000 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ *CONTROL_IMPLICIT_GENERAL $ imflag dt0 iefs nstepsb igso 1 0.01 0 0 0 $ *CONTROL_IMPLICIT_SOLUTION $ nlsolvr ilimit maxref dctol ectol rctol lstol 0 0 0 0.0 0.0 0 0 $ dnorm divflag inistif nlprint 0 0 0 0 $ *CONTROL_IMPLICIT_SOLVER $ lsolvr prntflg negeig 0 0 0 $ *CONTROL_IMPLICIT_AUTO $ iauto iteopt itewin dtmin dtmax 1 0 0 0.0 0.0 $ *CONTROL_IMPLICIT_DYNAMICS $ imass gamma beta 0 0.0 0.0 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ *DATABASE_EXTENT_BINARY $ neiph neips maxint strflg sigflg epsflg rltflg engflg 1 1 $ cmpflg ieverp beamip *DATABASE_BINARY_D3PLOT 0.01 *DATABASE_GLSTAT 0.01 *DATABASE_NODFOR 0.01 *DATABASE_NODAL_FORCE_GROUP 2 *SET_NODE_LIST 2 1 7 13 19 25 31 37 48 54 60 66 72 78 84 91 97 103 109 115 121 127 206 212 218 224 230 236 242 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ *CONTROL_HOURGLASS 4 $ *MAT_elastic $ MID RO E PR 1 7.890E-09 2.100E+05 3.000E-01 $ *SECTION_SHELL $ SID ELFORM 1 0 3.000E-00 3.000E-00 3.000E-00 3.000E-00 $ *PART SHELL $ PID SID MID ADPOPT 1 1 1 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ *LOAD_NODE_POINT $ NID DOF LCID SF 164 3 1 -1.0 $ *DEFINE_CURVE 1 0.00000000000000E+00 00.000000000000E+00 1.00000000000000E+00 500000.00000000E+00 2.00000000000000E+00 500000.00000000E+00 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $*LOAD_SEGMENT $$ LCID SF N1 N2 N3 N4 $ 2 -1.0 154 155 164 163 $ 2 -1.0 155 156 165 164 $ 2 -1.0 163 164 173 172 $ 2 -1.0 164 165 174 173 $ $*DEFINE_CURVE $ 2 $0.00000000000000E+00 00.000000000000E+00 $1.00000000000000E+00 7500.0000000000E+00 $2.00000000000000E+00 7500.0000000000E+00 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *END