Contact I
The rear bumper of a truck is modeled using shell elements. A solid, rigid bar is displaced into the bumper, causing plastic buckling of the support. Post-buckling response is determined.
https://www.dynaexamples.com/implicit/basic-examples/contact-i
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Contact I
The rear bumper of a truck is modeled using shell elements. A solid, rigid bar is displaced into the bumper, causing plastic buckling of the support. Post-buckling response is determined.
LS-DYNA Implicit Workshop Problem #6: Truck Bumper Objectives * Learn the behavior of contact interfaces in static implicit simulations. * Learn how to set input parameters for implicit contact problems. Problem Description The rear bumper of a truck is modeled using shell elements. A solid, rigid bar is displaced into the bumper, causing plastic buckling of the support. Post-buckling response is determined. Input Filename: bumper.k Procedure Copy the input file to your local directory. Using an editor, view the input file and answer the following questions: 1. What type of contact interface is used? 2. Is the thickness of the shell elements considered? Run the simulation and postprocess the results. 3. Why does the simulation stop? Temporarily increase the default displacement convergence tolerance to DCTOL=0.005 using keyword *CONTROL_IMPLICIT_SOLUTION, and repeat the simulation. Stop the job after about 10 steps using the interactive command stop. Postprocess the results, and magnify the displacements 10x. 4. What is wrong with the contact interface? Activate the flag IGAPF=2 on optional card C in the *CONTACT_ keyword. Repeat the simulation. 5. Does the job run? Why? To reduce the severity of the initial contact, decrease the contact penalty scale factor using SLSFAC=0.01 on *CONTROL_CONTACT. Rerun the simulation. 6. Does the interface separate cleanly? Plot the resultant interface force for the slave side of the interface. Save the curve data. 7. Why is the curve not smooth? Restore the convergence tolerance DCTOL to it's default value of 0.001, and repeat the simulation. Compare the new interface force with the saved data. Is the new curve smoother? Why?
*BOUNDARY_PRESCRIBED_MOTION_RIGID *CONTACT_SURFACE_TO_SURFACE *CONTROL_CONTACT *CONTROL_IMPLICIT_AUTO *CONTROL_IMPLICIT_GENERAL *CONTROL_IMPLICIT_SOLUTION *CONTROL_IMPLICIT_SOLVER $*CONTROL_SHELL *CONTROL_TERMINATION *DATABASE_BINARY_D3PLOT *DATABASE_GLSTAT *DATABASE_RCFORC *DEFINE_CURVE *ELEMENT_SHELL *ELEMENT_SOLID *END *KEYWORD *MAT_PLASTIC_KINEMATIC *MAT_POWER_LAW_PLASTICITY *MAT_RIGID *NODE *PART *SECTION_SHELL *SECTION_SOLID *TITLE
*KEYWORD *TITLE truck rear bumper $ $ units: in,lbf,sec $ *CONTROL_TERMINATION 0.0500000 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ *CONTROL_IMPLICIT_GENERAL $ imflag dt0 iefs nstepsb igso 1 0.0001 0 0 0 $ *CONTROL_IMPLICIT_SOLUTION $ nlsolvr ilimit maxref dctol ectol rctol lstol $ 0 0 0 0.0 0.0 0 0.0 0 0 0 0.001 0.0 0 0.0 $ dnorm divflag inistif nlprint 0 0 0 1 $ arcctl arcdir arclen arcmth arcdmp 0 0 0.0 0 0 $ *CONTROL_IMPLICIT_SOLVER $ lsolvr prntflg negeig 0 0 0 $ *CONTROL_IMPLICIT_AUTO $ iauto iteopt itewin dtmin dtmax 1 100 0 0.0001 0.001 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ $ displace bumper 5 inches $ *BOUNDARY_PRESCRIBED_MOTION_RIGID 4 2 2 1 1.0000000 0 0.0000000 0.0000000 *DEFINE_CURVE 1 0 1.0000000 1.0000000 0.0000000 0.0000000 0.00000000E+00 0.00000000E+00 0.50000000E-01 5.00000000E+00 2.00000000E-01 5.00000000E+00 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ *CONTROL_CONTACT $ SLSFAC RWPNAL ISLCHK SHLTHK PENOPT THKCHG ORIEN $ 0.0 0 0 1 0 0 0 0.01 0 0 1 0 0 0 $ (second card blank) $ *CONTACT_SURFACE_TO_SURFACE 4 3 3 3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 $ $ optional card A $ soft 0 $ $ optional card B $ penmax thkopt shlthk snlog 0.0 0 0 0 $ $ optional card C $ igapf 1=sticky (DEFAULT), 2=no-stick $ 0 2 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ *DATABASE_GLSTAT 1e-4 *DATABASE_RCFORC 1e-4 *DATABASE_BINARY_D3PLOT 1e-4 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ $ material properties $ *MAT_PLASTIC_KINEMATIC $ 1020 steel bilinear material model 1 7.30000-4 3.00000+7 0.3000000 30000.000 1.25000+5 0.0000000 0.0000000 0.0000000 0.0000000 *MAT_RIGID 2 7.30000-4 3.00000+7 0.3000000 0.0000000 0.0000000 0.0000000 $ constrain all dof of frame 1.0000000 7.0000000 7.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 *MAT_PLASTIC_KINEMATIC $ 1020 steel bilinear material model 3 7.30000-4 3.00000+7 0.3000000 30000.000 1.25000+5 0.0000000 0.0000000 0.0000000 0.0000000 *MAT_RIGID 4 7.30000-4 3.00000+7 0.3000000 0.0000000 0.0000000 0.0000000 $ allow only y dof of impactor 1.0000000 6.0000000 7.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 *MAT_POWER_LAW_PLASTICITY $ alternate 1020 steel material model 5 7.30000-4 3.00000+7 0.3000000 91353 .1911 0 0 *SECTION_SHELL 1 6 0.0000000 5.0000000 0.0000000 0.0000000 0 0.2500000 0.2500000 0.2500000 0.2500000 *SECTION_SHELL 2 6 0.0000000 5.0000000 0.0000000 0.0000000 0 0.2500000 0.2500000 0.2500000 0.2500000 *SECTION_SHELL 3 6 0.0000000 5.0000000 0.0000000 0.0000000 0 0.1875000 0.1875000 0.1875000 0.1875000 *SECTION_SOLID 4 $*CONTROL_SHELL $0,0,0,0,0,0,2 $ *PART support 1 1 1 *PART frame 2 2 2 *PART bumper 3 3 3 *PART impactor 4 4 4 $ $ --------------------------------------------------------------- $ *END