Adaptive
A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database. Adaptivity is used to automatically refine the mesh in areas of high curvature.
https://www.dynaexamples.com/implicit/basic-examples/adaptive
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Adaptive
A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database. Adaptivity is used to automatically refine the mesh in areas of high curvature.
LS-DYNA Implicit Workshop Problem #10: Adaptive Ellipsoidal Dome Objectives * Learn to activate mesh adaptivity in an implicit simulation. * Learn how to minimize hourglass problems. Problem Description A static load is applied to the center of an ellipsoidal dome. Shell elements are used. Nodes at the base of the dome are constrained, and included in a NODFOR output database. Adaptivity is used to automatically refine the mesh in areas of high curvature. Input Filename: aellipse.k Procedure Copy the input file to your local directory. Using an editor, view the input file and answer the following questions: 1. How frequently will the mesh be evaluated for refinement? 2. How many times can each element be subdivided? 3. How do you indicate which parts will be adapted? 4. Which element formulation is used? 5. How is load applied? Execute the simulation, and view the results with the postprocessor. 6. How many time steps and cycles were used? steps cycles 7. Applied load: Center displacement: 8. Does the adaptive mesh improve the hourglassing problem Switch to pressure driven load application, and repeat the simulation. Postprocess the results. Using the NODFOR database, verify that the load is applied correctly as the mesh is refined. 9. How many time steps and cycles were used? steps cycles 10. Does the pressure load improve nonlinear convergence? 11. Applied loadr: Center displacement: Experiment with shell element formulation #16. 12. Does shell type #16 improve hourglassing? 13. Does shell type #16 improve convergence behavior (number of steps/cycles)?
*CONTROL_ADAPTIVE *CONTROL_HOURGLASS *CONTROL_IMPLICIT_AUTO *CONTROL_IMPLICIT_DYNAMICS *CONTROL_IMPLICIT_GENERAL *CONTROL_IMPLICIT_SOLUTION *CONTROL_IMPLICIT_SOLVER *CONTROL_TERMINATION *DATABASE_BINARY_D3PLOT *DATABASE_EXTENT_BINARY *DATABASE_GLSTAT *DATABASE_NODAL_FORCE_GROUP *DATABASE_NODFOR $*DEFINE_CURVE *DEFINE_CURVE *END *KEYWORD *LOAD_NODE_POINT $*LOAD_SEGMENT *MAT_elastic *PART *SECTION_SHELL *SET_NODE_LIST *TITLE
*KEYWORD *TITLE PINCHED ELLIPSE $ $ A. Tabiei, March 99 $ units; mm, s, ton, N $ *CONTROL_TERMINATION 1.0000 $ *CONTROL_ADAPTIVE $ adpfreq adptol adpopt maxlvl tbirth tdeath lcadp ioflag 0.10 5.000 2 3 0.0 0.0 0 0 $ adpsize adpass ireflg adpene 0.0000000 1 0 1.0 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ *CONTROL_IMPLICIT_GENERAL $ imflag dt0 iefs nstepsb igso 1 0.01 0 0 0 $ *CONTROL_IMPLICIT_SOLUTION $ nlsolvr ilimit maxref dctol ectol rctol lstol 0 0 0 0.0 0.0 0 0 $ dnorm divflag inistif nlprint 0 0 0 0 $ *CONTROL_IMPLICIT_SOLVER $ lsolvr prntflg negeig 0 0 0 $ *CONTROL_IMPLICIT_AUTO $ iauto iteopt itewin dtmin dtmax 1 0 0 0.0 0.0 $ *CONTROL_IMPLICIT_DYNAMICS $ imass gamma beta 0 0.0 0.0 $ $========1=========2=========3=========4=========5=========6=========7=========8 $ *DATABASE_EXTENT_BINARY $ neiph neips maxint strflg sigflg epsflg rltflg engflg 1 1 $ cmpflg ieverp beamip *DATABASE_BINARY_D3PLOT 0.01 *DATABASE_GLSTAT 0.01 *DATABASE_NODFOR 0.01 *DATABASE_NODAL_FORCE_GROUP 2 *SET_NODE_LIST 2 1 7 13 19 25 31 37 48 54 60 66 72 78 84 91 97 103 109 115 121 127 206 212 218 224 230 236 242 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ *CONTROL_HOURGLASS 4 $ *MAT_elastic $ MID RO E PR 1 7.890E-09 2.100E+05 3.000E-01 $ *SECTION_SHELL $ SID ELFORM 1 2 3.000E-00 3.000E-00 3.000E-00 3.000E-00 $ *PART SHELL $ PID SID MID ADPOPT 1 1 1 0 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ *LOAD_NODE_POINT $ NID DOF LCID SF 164 3 1 -1.0 $ *DEFINE_CURVE 1 0.00000000000000E+00 00.000000000000E+00 1.00000000000000E+00 500000.00000000E+00 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $*LOAD_SEGMENT $$ LCID SF N1 N2 N3 N4 $ 2 -1.0 154 155 164 163 $ 2 -1.0 155 156 165 164 $ 2 -1.0 163 164 173 172 $ 2 -1.0 164 165 174 173 $ $*DEFINE_CURVE $ 2 $0.00000000000000E+00 00.000000000000E+00 $1.00000000000000E+00 7500.0000000000E+00 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *NODE 1 22.627417 -16.97056299999 0.0 7 7 2 22.332757 -16.749568 3.8763777 3 21.462 -16.09649999999 7.615231 4 20.065733999999 -15.0493 11.096923 5 18.217324 -13.662993 14.235898 6 16.0 -12.0 16.970562999999 7 27.446269999999 -12.339774 0.0 7 7 8 26.906521999999 -12.067746 4.8105589 9 25.311105 -11.481794 9.1543237 10 22.863424999999 -10.624359 13.003226 11 19.716536999999 -9.5432552 16.317444999999 12 16.0 -8.290928299999 19.059394 13 30.783318999999 -6.5549861 0.0 7 7 14 30.006588 -6.3723023 5.3778628 15 27.897109 -6.0202527 10.099093 16 24.740081 -5.5252473 14.183842 17 20.726296 -4.9196061 17.611333999999 18 16.0 -4.2342801 20.348731 19 32.0 0.0 0.0 7 7 20 31.126259 0.0 5.5700325 21 28.826521 0.0 10.420188 22 25.412948 0.0 14.585178 23 21.088252 0.0 18.051265 24 16.0 0.0 20.78461 25 30.783199 6.5553032 0.0 7 7 26 30.006492999999 6.3725534 5.3778627 27 27.897037999999 6.0204347 10.099093999999 28 24.740034 5.525362 14.183843 29 20.726272999999 4.9196591 17.611333999999 30 16.0 4.2342801 20.348731 31 27.447541999999 12.338182 0.0 7 7 32 26.907578999999 12.066411 4.8105821 33 25.311917999999 11.480756 9.1543614 34 22.863966 10.623673 13.003251 35 19.716805 9.5429215 16.317457 36 16.0 8.2909282999999 19.059394 37 22.627417 16.970562999999 0.0 7 7 38 22.332757 16.749568 3.8763777 39 21.462 16.096499999999 7.615231 40 20.065733999999 15.0493 11.096923 41 18.217324 13.662993 14.235898 42 16.0 12.0 16.970562999999 43 -16.0 -12.0 16.970562999999 44 -18.218449 -13.66383699999 14.234035 45 -20.065732 -15.049299 11.096848 46 -21.462235 -16.09667599999 7.6152887 47 -22.332974 -16.749731 3.8764176 48 -22.627417 -16.97056299999 0.0 7 7 49 -16.0 -8.290928299999 19.059394 50 -19.723448 -9.5445661 16.311979 51 -22.86926899999 -10.625037 12.996888999999 52 -25.31559599999 -11.482084 9.1469713 53 -26.908767 -12.067244 4.804753 54 -27.44754199999 -12.338182 0.0 7 7 55 -16.0 -4.2342801 20.348731 56 -20.737171 -4.9208503 17.603784 57 -24.74971199999 -5.5265164 14.173892 58 -27.90404399999 -6.0215693 10.087524 59 -30.009139 -6.3732333 5.368744 60 -30.783199 -6.5553032 0.0 7 7 61 -16.0 0.0 20.78461 62 -21.100687 0.0 18.043088999999 63 -25.42426199999 0.0 14.574083 64 -28.834848 0.0 10.407221 65 -31.129503 0.0 5.5598258 66 -32.0 0.0 0.0 7 7 67 -16.0 4.2342801 20.348731 68 -20.73719399999 4.9207969 17.603784 69 -24.749759 5.5264012 14.173892 70 -27.904115 6.0213868 10.087522999999 71 -30.00923399999 6.3729818 5.3687441 72 -30.78331899999 6.5549861 0.0 7 7 73 -16.0 8.2909282999999 19.059394 74 -19.723178 9.5449018999999 16.311966 75 -22.86872599999 10.625724999999 12.996864 76 -25.314781 11.483124 9.1469337999999 77 -26.907708 12.06858 4.80473 78 -27.44626999999 12.339774 0.0 7 7 79 -16.0 12.0 16.970562999999 80 -18.218449 13.663836999999 14.234035 81 -20.065732 15.049299 11.096848 82 -21.462235 16.096675999999 7.6152887 83 -22.332974 16.749731 3.8764176 84 -22.627417 16.970562999999 0.0 7 7 91 -17.48928 -20.098392 0.0 7 7 92 -17.26152199999 -19.650828 4.7161829 93 -16.542732 -18.416694 9.1044219 94 -15.403636 -16.59363799999 12.93003 95 -13.932169 -14.398075 16.109351 96 -12.209959 -12.0 18.659607 97 -11.88277199999 -22.28395899999 0.0 7 7 98 -11.726379 -21.686772 5.3231273 99 -11.217618 -20.039218 10.180745999999 100 -10.418631 -17.66228299999 14.247301 101 -9.4029368 -14.898503 17.444227 102 -8.2337168 -12.0 19.847377 103 -6.0041111 -23.57376199999 0.0 7 7 104 -5.9212821 -22.889416 5.6879244 105 -5.6568419 -20.99456 10.827211999999 106 -5.2464861 -18.28748699999 15.036111999999 107 -4.7312145 -15.188826 18.240293999999 108 -4.1437314 -12.0 20.551518 109 0.0 -24.0 0.0 7 7 110 0.0 -23.286255 5.8095019 111 0.0 -21.30883199999 11.042358 112 0.0 -18.49231299999 15.298182 113 0.0 -15.283376 18.504550999999 114 0.0 -12.0 20.784751 115 6.0041111 -23.57376199999 0.0 7 7 116 5.9212863 -22.889278 5.6884796 117 5.6569458 -20.994126 10.828023 118 5.2467251 -18.286845 15.036846 119 4.7301217 -15.187905 18.241220999999 120 4.1437648 -12.0 20.551594999999 121 11.882771999999 -22.28395899999 0.0 122 11.726438 -21.686547 5.3239722 123 11.217784999999 -20.038532 10.181991999999 124 10.41892 -17.66126699999 14.248442 125 9.4018628 -14.896951 17.445878 126 8.2337532 -12.0 19.847474999999 127 17.48928 -20.098392 0.0 7 7 128 17.261614 -19.650618 4.7168692 129 16.542929 -18.41608799999 9.1054476 130 15.403937 -16.592737 12.930984 131 13.931139 -14.39643 16.111322 132 12.20998 -12.0 18.659656999999 143 12.209709999999 -8.276903799999 20.582445 144 8.2335151999999 -8.2726636 21.66635 145 4.1437061 -8.2721876 22.313956 146 0.0 -8.2723656 22.529268999999 147 -4.1436886 -8.2722233 22.313943999999 148 -8.2335029 -8.2727105 21.666335 149 -12.209705 -8.2769288 20.582436999999 152 12.209707999999 -4.2329685 21.776734999999 153 8.2335121 -4.2360558 22.801832 154 4.1437017 -4.2392893 23.417304999999 155 0.0 -4.2405908 23.622392 156 -4.143693 -4.2393245 23.417299 157 -8.233506 -4.2361022 22.801825 158 -12.209706 -4.2329933 21.776731 161 12.209707 0.0 22.184324 162 8.233509 0.0 23.191976 163 4.1436974 0.0 23.797936 164 0.0 0.0 24.0 165 -4.1436974 0.0 23.797936 166 -8.233509 0.0 23.191976 167 -12.209707 0.0 22.184324 170 12.209706 4.2329932 21.776731 171 8.2335059 4.2361022 22.801825 172 4.143693 4.2393245 23.417299 173 0.0 4.2405908 23.622392 174 -4.1437017 4.2392893 23.417304999999 175 -8.233511999999 4.2360558 22.801832 176 -12.20970799999 4.2329684 21.776734999999 179 12.209704 8.2769288 20.582436999999 180 8.2335027 8.2727105 21.666335 181 4.1436886 8.2722233 22.313943999999 182 0.0 8.2723656 22.529268999999 183 -4.1437061 8.2721876 22.313956 184 -8.233515 8.2726636 21.66635 185 -12.209709 8.2769037999999 20.582445 188 12.209959 12.0 18.659607 189 8.2337168 12.0 19.847377 190 4.1437314 12.0 20.551518 191 0.0 12.0 20.784751 192 -4.1437648 12.0 20.551594999999 193 -8.2337532 12.0 19.847474999999 194 -12.20998 12.0 18.659656999999 202 -13.932105 14.398275999999 16.109202 203 -15.403756 16.593589 12.930012 204 -16.54281699999 18.416656 9.1044137 205 -17.26155199999 19.650814 4.7161801 206 -17.48928 20.098392 0.0 7 7 208 -9.4027747 14.898944999999 17.443898999999 209 -10.418839 17.662222 14.247291 210 -11.21776599999 20.039172 10.180744 211 -11.726431 21.686757 5.3231261 212 -11.88277199999 22.283958999999 0.0 7 7 214 -4.7309327 15.189534999999 18.239744999999 215 -5.246739 18.287448 15.03611 216 -5.6570229 20.994532 10.827214 217 -5.9213468 22.889408 5.6879202 218 -6.0041111 23.573761999999 0.0 7 7 220 0.0 15.284345 18.503751 221 0.0 18.492312999999 15.298182 222 0.0 21.308831999999 11.042358 223 0.0 23.286258 5.8094905 224 0.0 24.0 0.0 7 7 226 4.730731 15.189071999999 18.240159999999 227 5.2464714 18.286884 15.036848 228 5.6567643 20.994154999999 10.828021 229 5.9212221 22.889291 5.6884616 230 6.0041111 23.573761999999 0.0 7 7 232 9.4026744 14.898198 17.444566999999 233 10.418711 17.661328 14.248452 234 11.217637 20.038578 10.181994 235 11.726387 21.686567 5.3239526 236 11.882771999999 22.283958999999 0.0 7 7 238 13.932152 14.397596999999 16.109787 239 15.403816 16.592786 12.931003 240 16.542845 18.416126999999 9.1054556 241 17.261586 19.650635 4.7168534 242 17.48928 20.098392 0.0 7 7 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ELEMENT_SHELL 1 1 1 2 8 7 2 1 2 3 9 8 3 1 3 4 10 9 4 1 4 5 11 10 5 1 5 6 12 11 6 1 7 8 14 13 7 1 8 9 15 14 8 1 9 10 16 15 9 1 10 11 17 16 10 1 11 12 18 17 11 1 13 14 20 19 12 1 14 15 21 20 13 1 15 16 22 21 14 1 16 17 23 22 15 1 17 18 24 23 16 1 19 20 26 25 17 1 20 21 27 26 18 1 21 22 28 27 19 1 22 23 29 28 20 1 23 24 30 29 21 1 25 26 32 31 22 1 26 27 33 32 23 1 27 28 34 33 24 1 28 29 35 34 25 1 29 30 36 35 26 1 31 32 38 37 27 1 32 33 39 38 28 1 33 34 40 39 29 1 34 35 41 40 30 1 35 36 42 41 31 1 43 44 50 49 32 1 44 45 51 50 33 1 45 46 52 51 34 1 46 47 53 52 35 1 47 48 54 53 36 1 49 50 56 55 37 1 50 51 57 56 38 1 51 52 58 57 39 1 52 53 59 58 40 1 53 54 60 59 41 1 55 56 62 61 42 1 56 57 63 62 43 1 57 58 64 63 44 1 58 59 65 64 45 1 59 60 66 65 46 1 61 62 68 67 47 1 62 63 69 68 48 1 63 64 70 69 49 1 64 65 71 70 50 1 65 66 72 71 51 1 67 68 74 73 52 1 68 69 75 74 53 1 69 70 76 75 54 1 70 71 77 76 55 1 71 72 78 77 56 1 73 74 80 79 57 1 74 75 81 80 58 1 75 76 82 81 59 1 76 77 83 82 60 1 77 78 84 83 61 1 48 47 92 91 62 1 47 46 93 92 63 1 46 45 94 93 64 1 45 44 95 94 65 1 44 43 96 95 66 1 91 92 98 97 67 1 92 93 99 98 68 1 93 94 100 99 69 1 94 95 101 100 70 1 95 96 102 101 71 1 97 98 104 103 72 1 98 99 105 104 73 1 99 100 106 105 74 1 100 101 107 106 75 1 101 102 108 107 76 1 103 104 110 109 77 1 104 105 111 110 78 1 105 106 112 111 79 1 106 107 113 112 80 1 107 108 114 113 81 1 109 110 116 115 82 1 110 111 117 116 83 1 111 112 118 117 84 1 112 113 119 118 85 1 113 114 120 119 86 1 115 116 122 121 87 1 116 117 123 122 88 1 117 118 124 123 89 1 118 119 125 124 90 1 119 120 126 125 91 1 121 122 128 127 92 1 122 123 129 128 93 1 123 124 130 129 94 1 124 125 131 130 95 1 125 126 132 131 96 1 127 128 2 1 97 1 128 129 3 2 98 1 129 130 4 3 99 1 130 131 5 4 100 1 131 132 6 5 101 1 6 132 143 12 102 1 132 126 144 143 103 1 126 120 145 144 104 1 120 114 146 145 105 1 114 108 147 146 106 1 108 102 148 147 107 1 102 96 149 148 108 1 96 43 49 149 109 1 12 143 152 18 110 1 143 144 153 152 111 1 144 145 154 153 112 1 145 146 155 154 113 1 146 147 156 155 114 1 147 148 157 156 115 1 148 149 158 157 116 1 149 49 55 158 117 1 18 152 161 24 118 1 152 153 162 161 119 1 153 154 163 162 120 1 154 155 164 163 121 1 155 156 165 164 122 1 156 157 166 165 123 1 157 158 167 166 124 1 158 55 61 167 125 1 24 161 170 30 126 1 161 162 171 170 127 1 162 163 172 171 128 1 163 164 173 172 129 1 164 165 174 173 130 1 165 166 175 174 131 1 166 167 176 175 132 1 167 61 67 176 133 1 30 170 179 36 134 1 170 171 180 179 135 1 171 172 181 180 136 1 172 173 182 181 137 1 173 174 183 182 138 1 174 175 184 183 139 1 175 176 185 184 140 1 176 67 73 185 141 1 36 179 188 42 142 1 179 180 189 188 143 1 180 181 190 189 144 1 181 182 191 190 145 1 182 183 192 191 146 1 183 184 193 192 147 1 184 185 194 193 148 1 185 73 79 194 149 1 79 80 202 194 150 1 80 81 203 202 151 1 81 82 204 203 152 1 82 83 205 204 153 1 83 84 206 205 154 1 194 202 208 193 155 1 202 203 209 208 156 1 203 204 210 209 157 1 204 205 211 210 158 1 205 206 212 211 159 1 193 208 214 192 160 1 208 209 215 214 161 1 209 210 216 215 162 1 210 211 217 216 163 1 211 212 218 217 164 1 192 214 220 191 165 1 214 215 221 220 166 1 215 216 222 221 167 1 216 217 223 222 168 1 217 218 224 223 169 1 191 220 226 190 170 1 220 221 227 226 171 1 221 222 228 227 172 1 222 223 229 228 173 1 223 224 230 229 174 1 190 226 232 189 175 1 226 227 233 232 176 1 227 228 234 233 177 1 228 229 235 234 178 1 229 230 236 235 179 1 189 232 238 188 180 1 232 233 239 238 181 1 233 234 240 239 182 1 234 235 241 240 183 1 235 236 242 241 184 1 188 238 41 42 185 1 238 239 40 41 186 1 239 240 39 40 187 1 240 241 38 39 188 1 241 242 37 38 *END