Intermediate : Water impact on rigid column
Fluid pressure fringes
*KEYWORD *TITLE *DATABASE_BINARY_D3PLOT *DEFINE_CURVE_TITLE *ICFD_BOUNDARY_FREESLIP *ICFD_BOUNDARY_NONSLIP *ICFD_CONTROL_OUTPUT *ICFD_CONTROL_TIME *ICFD_DATABASE_DRAG *ICFD_DATABASE_POINTOUT *ICFD_MAT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *LOAD_BODY_Z *MESH_INTERF *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *PARAMETER *END
$----------------------------------------------------------------------------- $ $ Example provided by Iñaki (LSTC) $ $ E-Mail: info@dynamore.de $ Web: http://www.dynamore.de $ $ Copyright, 2015 DYNAmore GmbH $ Copying for non-commercial usage allowed if $ copy bears this notice completely. $ $X------------------------------------------------------------------------------ $X $X 1. Run file as is. $X Requires LS-DYNA MPP R8.0.0 (or higher) with double precision $X $X------------------------------------------------------------------------------ $# UNITS: (kg/m/s) $X------------------------------------------------------------------------------ $X *KEYWORD *TITLE ICFD Water impact on rigid column *INCLUDE mesh.k $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ PARAMETERS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *PARAMETER R T_end 3.0 R dt_plot 0.05 $ $--- Fluid $ Rrho_fluid 1000 R mu_fluid 0.001 R dt_fluid 0.000 Rcfl_fluid 0.90 R grav 9.81 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD CONTROL CARDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_CONTROL_TIME $# ttm dt cfl &T_end &dt_fluid&cfl_fluid *ICFD_CONTROL_OUTPUT $# msgl 4 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD PARTS/ SECTION/ MATERIAL $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_SECTION $# sid 1 *ICFD_MAT $# mid flg ro vis 1 1&rho_fluid &mu_fluid *ICFD_MAT $# mid flg 2 0 *ICFD_PART $# pid secid mid 1 1 1 *ICFD_PART $# pid secid mid 2 1 1 *ICFD_PART $# pid secid mid 3 1 1 *ICFD_PART $# pid secid mid 4 1 1 *ICFD_PART $# pid secid mid 5 1 1 *ICFD_PART $# pid secid mid 6 1 1 *ICFD_PART $# pid secid mid 7 1 2 *ICFD_PART $# pid secid mid 8 1 2 *ICFD_PART $# pid secid mid 9 1 1 *ICFD_PART $# pid secid mid 10 1 2 *ICFD_PART $# pid secid mid 11 1 1 *ICFD_PART $# pid secid mid 12 1 2 *ICFD_PART_VOL $# pid secid mid 13 1 1 $# spid1 spid2 spid3 spid4 spid5 spid6 spid7 spid8 1 2 3 4 5 6 9 11 *ICFD_PART_VOL $# pid secid mid 14 1 2 $# spid1 spid2 spid3 spid4 spid5 spid6 spid7 spid8 6 7 8 10 12 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD BOUNDARY/INITIAL/LOAD CONDITIONS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_BOUNDARY_FREESLIP $# pid 1 *ICFD_BOUNDARY_NONSLIP $# pid 2 *ICFD_BOUNDARY_FREESLIP $# pid 3 *ICFD_BOUNDARY_FREESLIP $# pid 4 *ICFD_BOUNDARY_FREESLIP $# pid 5 *ICFD_BOUNDARY_FREESLIP $# pid 7 *ICFD_BOUNDARY_FREESLIP $# pid 8 *ICFD_BOUNDARY_FREESLIP $# pid 9 *ICFD_BOUNDARY_NONSLIP $# pid 10 *ICFD_BOUNDARY_NONSLIP $# pid 11 *ICFD_BOUNDARY_FREESLIP $# pid 12 *LOAD_BODY_Z $# lcid sf 1 1 *DEFINE_CURVE_TITLE Gravity force $# lcid sidr sfa sfo offa offo dattyp 1 &grav $# a1 o1 0.0 1.0 10000.0 1.0 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD MESH KEYWORDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *MESH_VOLUME $# volid 30 $# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8 1 2 3 4 5 7 8 9 $# pid10 pid11 pid12 10 11 12 *MESH_INTERF $# volid 30 $# pid1 6 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ DATABASE (OUTPUT) $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *DATABASE_BINARY_D3PLOT &dt_plot *ICFD_DATABASE_DRAG $# pid 10 *ICFD_DATABASE_DRAG $# pid 11 *ICFD_DATABASE_POINTOUT $# outlv dt 1 5e-3 $# pid x y z 1 0.846 0. 0.026 *END
This case simulates the impact of a water column on a rigid obstacle and compares results with the experience. Note that there is a thin wet layer of fluid at the bottom. Warning : the mesh is fine, 8 CPUs or more are recommended for this case.
References :
[1] M. Gomez-Gesteira, A. J. C. Crespo, B. D. Rogers, R. A. Dalrymple, J. M. Dominguez, and A. Barreiro, “Sphysics - development of a free-surface fluid solver - part 2: Efficiency and test cases,” Comput. Geosci., vol. 48, pp. 300–307, Nov. 2012.
[2] T. Wu, A Numerical Study of three dimensional Breaking Waves and Turbulence effects. PhD thesis, Cornell University, 2004.
[3] T. B. Silvester and P. W. Cleary, “Wave-structure interaction using smoothed particle hydrodynamics,” (CSIRO, Melbourne, Australia), Fith International Conference on CFD in the Process Industries, December 2006.