Basics : Strong FSI
Fluid velocity fringes
*BOUNDARY_PRESCRIBED_MOTION_RIGID *CONTROL_IMPLICIT_DYNAMICS *CONTROL_IMPLICIT_GENERAL *CONTROL_IMPLICIT_SOLUTION *CONTROL_TERMINATION *DATABASE_BINARY_D3PLOT *DEFINE_CURVE_FUNCTION *DEFINE_CURVE_TITLE *ELEMENT_SHELL *END *ICFD_BOUNDARY_FREESLIP *ICFD_BOUNDARY_FSI *ICFD_BOUNDARY_PRESCRIBED_VEL *ICFD_BOUNDARY_PRESCRIBED_PRE *ICFD_BOUNDARY_NONSLIP *ICFD_CONTROL_FSI *ICFD_CONTROL_TIME *ICFD_DATABASE_DRAG *ICFD_MAT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *KEYWORD *MAT *MESH_BL *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *NODE *PARAMETER *PART *SECTION *TITLE
$----------------------------------------------------------------------------- $ $ Example provided by Iñaki (LSTC) $ $ E-Mail: info@dynamore.de $ Web: http://www.dynamore.de $ $ Copyright, 2015 DYNAmore GmbH $ Copying for non-commercial usage allowed if $ copy bears this notice completely. $ $X------------------------------------------------------------------------------ $X $X 1. Run file as is. $X Requires LS-DYNA MPP R8.0.0 (or higher) with double precision $X $X------------------------------------------------------------------------------ $# UNITS: Dimensionless. $X------------------------------------------------------------------------------ $X *KEYWORD *TITLE ICFD Cylinder flow - Strong FSI *INCLUDE mesh.k *INCLUDE struc.k *INCLUDE implicit.k $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ PARAMETERS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *PARAMETER R T_end 40.0 R dt_plot 0.20 $ $--- Fluid $ R v_inlet 1.0 Rrho_fluid 1.0 R mu_fluid 0.005 R dt_fluid 0.050 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD CONTROL CARDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_CONTROL_TIME $# ttm dt &T_end &dt_fluid *ICFD_CONTROL_FSI $# owc 0 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD PARTS/ SECTION/ MATERIAL $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_SECTION $# sid 1 *ICFD_MAT $# mid flg ro vis 1 1&rho_fluid &mu_fluid *ICFD_PART $# pid secid mid 1 1 1 *ICFD_PART $# pid secid mid 2 1 1 *ICFD_PART $# pid secid mid 3 1 1 *ICFD_PART $# pid secid mid 4 1 1 *ICFD_PART_VOL $# pid secid mid 10 1 1 $# spid1 spid2 spid3 spid4 1 2 3 4 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD BOUNDARY/INITIAL CONDITIONS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_BOUNDARY_PRESCRIBED_VEL $# pid dof vad lcid 1 1 1 1 *ICFD_BOUNDARY_PRESCRIBED_VEL $# pid dof vad lcid 1 2 1 2 *ICFD_BOUNDARY_PRESCRIBED_PRE $# pid lcid sf death birth 2 2 *ICFD_BOUNDARY_FREESLIP $# pid 3 *ICFD_BOUNDARY_NONSLIP $# pid 4 *ICFD_BOUNDARY_FSI $# pid 4 *DEFINE_CURVE_TITLE Velocity inlet $# lcid sidr sfa sfo offa offo dattyp 1 $# a1 o1 0.0 0. 5.0 0. 6.0 &v_inlet 10000.0 &v_inlet *DEFINE_CURVE_TITLE Pressure outlet $# lcid sidr sfa sfo offa offo dattyp 2 $# a1 o1 0.0 0.0 10000.0 0.0 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD MESH KEYWORDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *MESH_VOLUME $# volid 10 $# pid1 pid2 pid3 pid4 1 2 3 4 *MESH_BL $# pid nelth 4 2 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ DATABASE (OUTPUT) $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_DATABASE_DRAG $# pid 4 *DATABASE_BINARY_D3PLOT &dt_plot *end
This LS-DYNA simulation shows a simple FSI coupling problem using strong FSI. Indeed, the density of the solid and the fluid are very close. Such cases are by definition unstable when using explicit coupling between solid mechanics and a CFD code ('added mass effect'). The user is encouraged to try this problem using the explicit DYNA solver to see the instabilities. In order to reduce those instabilities, strong fluid structure interaction is needed. In order for this to be possible, both solvers need to advance at the same time and have the same timestep thus making the use of the implicit solver for solids mandatory. If the user gives different timesteps for the solid and the fluid, the smallest one of the two will be used.