Basics : Dam break
This LS-DYNA simulation shows a simple free surface example using the ICFD solver. A column of water collapses under the load of gravity. In order to set up such a problem, the domain must be divided in two ICFD_PART_VOLs, one for the fluid, one for the vacuum. For the automatic volume mesher to recognize the initial interface, the keyword MESH_INTERF must be used. Gravity load is applied through the use of LOAD_BODY keyword. Since the solver is implicit, no ramp up is needed.
https://www.dynaexamples.com/icfd/basics-examples/dam_break
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Basics : Dam break
This LS-DYNA simulation shows a simple free surface example using the ICFD solver. A column of water collapses under the load of gravity. In order to set up such a problem, the domain must be divided in two ICFD_PART_VOLs, one for the fluid, one for the vacuum. For the automatic volume mesher to recognize the initial interface, the keyword MESH_INTERF must be used. Gravity load is applied through the use of LOAD_BODY keyword. Since the solver is implicit, no ramp up is needed.
Fluid pressure fringes
*TITLE *KEYWORD *DATABASE_BINARY_D3PLOT *DEFINE_CURVE_TITLE *ICFD_BOUNDARY_FREESLIP *ICFD_CONTROL_TIME *ICFD_MAT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *LOAD_BODY_Y *MESH_INTERF *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *PARAMETER *END
$----------------------------------------------------------------------------- $ $ Example provided by Iñaki (LSTC) $ $ E-Mail: info@dynamore.de $ Web: http://www.dynamore.de $ $ Copyright, 2015 DYNAmore GmbH $ Copying for non-commercial usage allowed if $ copy bears this notice completely. $ $X------------------------------------------------------------------------------ $X $X 1. Run file as is. $X Requires LS-DYNA MPP R8.0.0 (or higher) with double precision $X $X------------------------------------------------------------------------------ $# UNITS: (kg/m/s) $X------------------------------------------------------------------------------ $X *KEYWORD *TITLE ICFD Dam break *INCLUDE mesh.k $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ PARAMETERS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *PARAMETER R T_end 50.0 R dt_plot 0.20 $ $--- Fluid $ Rrho_fluid 1000 R mu_fluid 0.001 R dt_fluid 0.000 R grav 9.81 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD CONTROL CARDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_CONTROL_TIME $# ttm dt &T_end &dt_fluid $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD PARTS/ SECTION/ MATERIAL $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_SECTION $# sid 1 *ICFD_MAT $# mid flg ro vis 1 1&rho_fluid &mu_fluid *ICFD_MAT $# mid flg 2 0 *ICFD_PART $# pid secid mid 1 1 1 *ICFD_PART $# pid secid mid 2 1 2 *ICFD_PART $# pid secid mid 3 1 1 *ICFD_PART_VOL $# pid secid mid 10 1 1 $# spid1 spid2 spid3 spid4 1 3 *ICFD_PART_VOL $# pid secid mid 20 1 2 $# spid1 spid2 spid3 spid4 2 3 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD BOUNDARY/INITIAL/LOAD CONDITIONS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_BOUNDARY_FREESLIP $# pid 1 *ICFD_BOUNDARY_FREESLIP $# pid 2 *LOAD_BODY_Y $# lcid sf 1 1 *DEFINE_CURVE_TITLE Gravity force $# lcid sidr sfa sfo offa offo dattyp 1 &grav $# a1 o1 0.0 1.0 10000.0 1.0 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD MESH KEYWORDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *MESH_VOLUME $# volid 30 $# pid1 pid2 1 2 *MESH_INTERF $# volid 30 $# pid1 3 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ DATABASE (OUTPUT) $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *DATABASE_BINARY_D3PLOT &dt_plot *end
This LS-DYNA simulation shows a simple free surface example using the ICFD solver. A column of water collapses under the load of gravity. In order to set up such a problem, the domain must be divided in two ICFD_PART_VOLs, one for the fluid, one for the vacuum. For the automatic volume mesher to recognize the initial interface, the keyword MESH_INTERF must be used. Gravity load is applied through the use of LOAD_BODY keyword. Since the solver is implicit, no ramp up is needed.