Basics : Internal 3D flow
This LS-DYNA simulation shows a simple 3D ICFD problem. It features a flow through a cylindrical pipe. Since the Reynolds number is laminar, a parabolic profile is expected at the outlet. It makes use of the ICFD_CONTROL_SURFMESH keyword to remesh the original surface mesh. The purpose of the ICFD_CONTROL_MESH in this input deck is to add more elements through the cylinder's diameter. It is also a good example for the MESH_BL_SYM keyword. The user can comment that keyword to see its impact on the mesh close to the inlet or outlet.
https://www.dynaexamples.com/icfd/basics-examples/3dinternal
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Basics : Internal 3D flow
This LS-DYNA simulation shows a simple 3D ICFD problem. It features a flow through a cylindrical pipe. Since the Reynolds number is laminar, a parabolic profile is expected at the outlet. It makes use of the ICFD_CONTROL_SURFMESH keyword to remesh the original surface mesh. The purpose of the ICFD_CONTROL_MESH in this input deck is to add more elements through the cylinder's diameter. It is also a good example for the MESH_BL_SYM keyword. The user can comment that keyword to see its impact on the mesh close to the inlet or outlet.
*DATABASE_BINARY_D3PLOT *DEFINE_CURVE_TITLE *END *ICFD_BOUNDARY_FREESLIP *ICFD_BOUNDARY_PRESCRIBED_VEL *ICFD_BOUNDARY_PRESCRIBED_PRE *ICFD_BOUNDARY_NONSLIP *ICFD_CONTROL_MESH *ICFD_CONTROL_TIME *ICFD_CONTROL_SURFMESH *ICFD_DATABASE_FLUX *ICFD_MAT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *KEYWORD *MESH_BL *MESH_BL_SYM *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *PARAMETER *TITLE
$----------------------------------------------------------------------------- $ $ Example provided by Iñaki (LSTC) $ $ E-Mail: info@dynamore.de $ Web: http://www.dynamore.de $ $ Copyright, 2015 DYNAmore GmbH $ Copying for non-commercial usage allowed if $ copy bears this notice completely. $ $X------------------------------------------------------------------------------ $X $X 1. Run file as is. $X Requires LS-DYNA MPP R8.0.0 (or higher) with double precision $X $X------------------------------------------------------------------------------ $# UNITS: Dimensionless. $X------------------------------------------------------------------------------ $X *keyword *title ICFD 3D Internal flow *include mesh.k $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ PARAMETERS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *PARAMETER R T_end 10.0 R dt_plot 1.00 $ $--- Fluid $ R v_inlet 1.0 Rrho_fluid 1.0 R mu_fluid 0.005 R dt_fluid 0.050 $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD CONTROL CARDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_CONTROL_TIME $# ttm dt &T_end &dt_fluid *ICFD_CONTROL_SURFMESH $# rsrf 1 *ICFD_CONTROL_MESH $# mgsf 1.1 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD PARTS/ SECTION/ MATERIAL $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_SECTION $# sid 1 *ICFD_MAT $# mid flg ro vis 1 1&rho_fluid &mu_fluid *ICFD_PART $# pid secid mid 1 1 1 *ICFD_PART $# pid secid mid 2 1 1 *ICFD_PART $# pid secid mid 3 1 1 *ICFD_PART_VOL $# pid secid mid 10 1 1 $# spid1 spid2 spid3 1 2 3 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD BOUNDARY/INITIAL CONDITIONS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_BOUNDARY_PRESCRIBED_VEL $# pid dof vad lcid 1 1 1 1 *ICFD_BOUNDARY_PRESCRIBED_VEL $# pid dof vad lcid 1 2 1 2 *ICFD_BOUNDARY_PRESCRIBED_PRE $# pid lcid sf death birth 2 2 *ICFD_BOUNDARY_NONSLIP $# pid 3 *DEFINE_CURVE_TITLE Velocity inlet $# lcid sidr sfa sfo offa offo dattyp 1 &v_inlet $# a1 o1 0.0 1.0 10000.0 1.0 *DEFINE_CURVE_TITLE Pressure outlet $# lcid sidr sfa sfo offa offo dattyp 2 $# a1 o1 0.0 0.0 10000.0 0.0 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD MESH KEYWORDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *MESH_VOLUME $# volid 1 $# pid1 pid2 pid3 pid4 1 2 3 *MESH_BL $# pid nelth 3 1 *MESH_BL_SYM $# pid1 1 *MESH_BL_SYM $# pid1 2 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ DATABASE (OUTPUT) $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_DATABASE_FLUX $# pid 2 *DATABASE_BINARY_D3PLOT &dt_plot *END
Fluid velocity fringes
This LS-DYNA simulation shows a simple 3D ICFD problem. It features a flow through a cylindrical pipe. Since the Reynolds number is laminar, a parabolic profile is expected at the outlet. It makes use of the ICFD_CONTROL_SURFMESH keyword to remesh the original surface mesh. The purpose of the ICFD_CONTROL_MESH keyword is to have more elements through the cylinder's diameter. It is also a good example for the MESH_BL_SYM keyword. The user can comment that keyword to see its impact on the mesh close to the inlet or outlet.