Advanced : Jet Impingement model
Temperature fringes
*KEYWORD *TITLE
*ICFD_BOUNDARY_CONJ_HEAT *ICFD_BOUNDARY_FREESLIP *ICFD_BOUNDARY_NONSLIP *ICFD_BOUNDARY_PRESCRIBED_PRE *ICFD_BOUNDARY_PRESCRIBED_VEL *ICFD_CONTROL_MESH *ICFD_CONTROL_OUTPUT *ICFD_CONTROL_TIME
*ICFD_CONTROL_TURBULENCE
*ICFD_DATABASE_FLUX
*ICFD_DATABASE_DRAG *ICFD_MAT
*ICFD_MODEL_NONNEWT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *LOAD_BODY *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *END
$X------------------------------------------------------------------------------
$X
$X 1. Run file as is.
$X Requires LS-DYNA MPP R13 (or more recent) with double precision
$X
$X------------------------------------------------------------------------------
$# UNITS: (kg/m/s)
$X------------------------------------------------------------------------------
*KEYWORD
*TITLE
ICFD Jet Impingement Single Volume
*INCLUDE
mesh_fluid.k
*INCLUDE
structural_solid.k
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ PARAMETERS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PARAMETER
R T_end 1.4
R T_cut 0.5
R dt_plot 5.e-3
$
$--- Fluid
$
R v_inlet 5.0
Rrho_fluid 791.0
R mu_fluid 0.002
R dt_fluid 0.00001
RTemp_init 363.15
RTemp_inle 363.15
R Temp_w 423.15
R Cp_fluid 2050.0
R K_fluid 0.141
R S_fluid 0.0241
R Gravity 9.81
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD CONTROL CARDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_CONTROL_TIME
$# ttm dt cfl lcidsf dtmin dtmax dtinit tdeath
&T_end &dt_fluid 1.0 1e-5 0.001 2e-5 &T_cut
*ICFD_CONTROL_FSI
1
*ICFD_CONTROL_MESH
$# mgsf nrmsh
1.4
*ICFD_CONTROL_MESH_MOVE
$# mgsf nrmsh
-1
*ICFD_CONTROL_TURBULENCE
$# tmod submod
2
*ICFD_CONTROL_OUTPUT
$# msgl
3
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD SECTION/ MATERIAL/ PARTS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_SECTION
$# sid
1
*ICFD_MAT
$# mid flg ro vis st
1 1&rho_fluid
$# hc tc
&Cp_fluid &K_fluid
$# nnmoid pmmoid
1
*ICFD_MAT
$# mid flg
2 0
*ICFD_MODEL_NONNEWT
$# nnmoid nnid
1 8
$# k
101
*DEFINE_FUNCTION_TABULATED
$# fid
201
$#function
tabvisc
233.15, 11.5
243.15, 3.08
245.15, 2.4
253.15, 1.06
256.15, 0.8
263.15, 0.44
273.15, 0.18
283.15, 0.09
293.15, 0.055
298.15, 0.045
303.15, 0.036
313.15, 0.02489
323.15, 0.01728
333.15, 0.01252
343.15, 0.00947
353.15, 0.00735
363.15, 0.00587
373.15, 0.00478
383.15, 0.00415
393.15, 0.00335
403.15, 0.00286
413.15, 0.00247
423.15, 0.00215
448.15, 0.0016
*DEFINE_FUNCTION
$# fid
101
$#function
a(TEMP)=tabvisc(TEMP)
*icfd_part
4,1,2
*icfd_part
5,1,1
*icfd_part
6,1,1
*ICFD_PART
$ 1"outlet"
$# pid secid mid eosid hgid grav adpopt tmid
1 1 2 0 0 0 0 0
*ICFD_PART
$ 2"inlet"
$# pid secid mid eosid hgid grav adpopt tmid
2 1 1 0 0 0 0 0
*ICFD_PART
$ 3"front"
$# pid secid mid eosid hgid grav adpopt tmid
3 1 2 0 0 0 0 0
*ICFD_PART_VOL
$# pid secid mid
10 1 2
$# spid1 spid2 spid3
1 6 3 4 5
*ICFD_PART_VOL
20,1,1
2,5,6
*MESH_INTERF
10
6
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD BOUNDARY/INITIAL CONDITIONS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_BOUNDARY_PRESCRIBED_VEL
$# pid dof vad lcid
2 4 1 1
*ICFD_BOUNDARY_PRESCRIBED_TEMP
$# pid lcid
2 3
*ICFD_BOUNDARY_PRESCRIBED_PRE
$# pid lcid sf death birth
1 2
*ICFD_BOUNDARY_NONSLIP
$# pid
3
*ICFD_BOUNDARY_NONSLIP
4
*ICFD_BOUNDARY_NONSLIP
5
*ICFD_BOUNDARY_FSI
$# pid
3
*ICFD_BOUNDARY_CONJ_HEAT
$# pid
3
*LOAD_BODY_Z
$# lcid sf
5 1
*ICFD_INITIAL
$# pid vx vy vz temp
0 &Temp_init
*DEFINE_CURVE_TITLE
Velocity inlet
$# lcid sidr sfa sfo offa offo dattyp
1 &v_inlet
$# a1 o1
0.0 1.0
10000.0 1.0
*DEFINE_CURVE_TITLE
Pressure outlet
$# lcid sidr sfa sfo offa offo dattyp
2
$# a1 o1
0.0 0.0
10000.0 0.0
*DEFINE_CURVE_TITLE
Temp inlet
$# lcid sidr sfa sfo offa offo dattyp
3 &Temp_inle
$# a1 o1
0.0 1.0
10000.0 1.0
*DEFINE_CURVE_TITLE
Temp wall
$# lcid sidr sfa sfo offa offo dattyp
4 &Temp_w
$# a1 o1
0.0 1.0
10000.0 1.0
*DEFINE_CURVE_TITLE
Gravity force
$# lcid sidr sfa sfo offa offo dattyp
5 &Gravity
$# a1 o1
0.0 1.0
10000.0 1.0
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ ICFD MESH KEYWORDS $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MESH_VOLUME
$# volid
10
$# pid1 pid2 pid3
1 2 3 4 5
*MESH_BL
$# pid nelth blth blfe blst
$ 3 7 1.2 0.000006 3
3,2
*MESH_BL_SYM
$# pid1
1
*MESH_BL_SYM
$# pid1
2
$*mesh_bl
$5,2
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$ $
$ DATABASE (OUTPUT) $
$ $
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*ICFD_DATABASE_FLUX
$# pid
1
*ICFD_DATABASE_FLUX
$# pid
2
*ICFD_DATABASE_FLUX
$# pid
3
*ICFD_DATABASE_TEMP
$# pi
3,0.002
*ICFD_DATABASE_DRAG
$# pid
3
*DATABASE_BINARY_D3PLOT
&dt_plot
*END
In this conjugate heat transfer model, an oblique jet impact a hot wall and causes cooling to occur. Viscosity of the fluid varies with temperature. After 0.5 seconds, once it is assumed the jet has achieved a form of steady flow, the update of the momentum and pressure equations is frozen while the conjugate heat transfer solve proceeds. This allows to save calculation times, especially in cases that require long transient time for the thermal solve.