Advanced : Blood flow
In this example, blood flow through an artery. The Carrreau non newtonian model has been chosen to model the blood. Windkessel type boundary conditions have been imposed on the different vessel outlets symbolizing the external blood load. Use LS-DYNA version R10.1 or later.
https://www.dynaexamples.com/icfd/advanced-examples/copy_of_windkessel
https://www.dynaexamples.com/@@site-logo/LS-DYNA-Examples-Logo480x80.png
Advanced : Blood flow
In this example, blood flow through an artery. The Carrreau non newtonian model has been chosen to model the blood. Windkessel type boundary conditions have been imposed on the different vessel outlets symbolizing the external blood load. Use LS-DYNA version R10.1 or later.
Fluid velocity fringes
*KEYWORD *TITLE *DATABASE_BINARY_D3PLOT *DEFINE_CURVE *ICFD_BOUNDARY_NONSLIP *ICFD_BOUNDARY_PRESCRIBED_PRE *ICFD_BOUNDARY_WINDKESSEL *ICFD_CONTROL_MESH *ICFD_CONTROL_TIME *ICFD_DATABASE_FLUX *ICFD_DATABASE_TIMESTEP *ICFD_MAT *ICFD_MODEL_NONNEWT *ICFD_PART *ICFD_PART_VOL *ICFD_SECTION *INCLUDE *MESH_SURFACE_ELEMENT *MESH_SURFACE_NODE *MESH_VOLUME *PARAMETERS *END
$----------------------------------------------------------------------------- $ $ Example provided by Iñaki (LSTC) and Hossein Mohammadi (McGill University) $ $ E-Mail: info@dynamore.de $ Web: http://www.dynamore.de $ $ Copyright, 2015 DYNAmore GmbH $ Copying for non-commercial usage allowed if $ copy bears this notice completely. $ $X------------------------------------------------------------------------------ $X $X 1. Run file as is. $X Requires LS-DYNA MPP Dev 117000 (or higher) with double precision $X $X------------------------------------------------------------------------------ $# UNITS: (g/cm/s) $X------------------------------------------------------------------------------ $X *KEYWORD *TITLE ICFD Blood flow *INCLUDE mesh.k $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ PARAMETERS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *PARAMETER R t_end 0.5 R dt_fluid 5e-5 R dt_plot 0.005 Rp_init 126656 $ $--- Fluid $ $ Carreau model for blood flow Rrho_fluid 1.059 R mu_fluid 0.035 R mu_o 0.56 R n 0.3568 R lambda 3.313 $ Windkessel parameters R ra4 45000 R ca4 8.e-08 R ram4 75000. R cv4 3.e-6 R rv4 70000. R ra5 100000 R ca5 1.0E-07 R ram5 160000. R cv5 4.e-6 R rv5 40000. R ra6 25000. R ca6 6.0E-07 R ram6 40000. R cv6 1.8e-5 R rv6 9500. $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD CONTROL CARDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_CONTROL_MESH 1.05 *ICFD_CONTROL_TIME $# ttm dt cfl &t_end &dt_fluid $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD PARTS/ SECTION/ MATERIAL $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_MAT $# mid flg ro vis 1 1&rho_fluid &mu_fluid 2 *ICFD_MODEL_NONNEWT 2 2 &mu_o &n &mu_fluid &lambda *ICFD_PART $# pid secid mid 1 1 1 *ICFD_PART $# pid secid mid 2 1 1 *ICFD_PART $# pid secid mid 3 1 1 *ICFD_PART $# pid secid mid 4 1 1 *ICFD_PART $# pid secid mid 5 1 1 *ICFD_PART $# pid secid mid 6 1 1 *ICFD_PART_VOL $# pid secid mid 7 1 1 $# spid1 spid2 spid3 spid4 spid5 spid6 spid7 spid8 1 2 3 4 5 6 *ICFD_SECTION $# sid 1 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD BOUNDARY/INITIAL/LOAD CONDITIONS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_BOUNDARY_PRESCRIBED_PRE 1 2 *ICFD_BOUNDARY_PRESCRIBED_PRE 2 1 *ICFD_BOUNDARY_NONSLIP $# pid 3 *ICFD_BOUNDARY_WINDKESSEL $# pid wtype r1 c1 r2 4 3 &ra4 &ca4 &ram4 $# p2lcid c2 r3 &cv4 &rv4 *ICFD_BOUNDARY_WINDKESSEL $# pid wtype r1 c1 r2 5 3 &ra5 &ca5 &ram5 $# p2lcid c2 r3 &cv5 &rv5 *ICFD_BOUNDARY_WINDKESSEL $# pid wtype r1 c1 r2 6 3 &ra6 &ca6 &ram6 $# p2lcid c2 r3 &cv6 &rv6 *ICFD_INITIAL 0 0 0 0 0 &p_init *DEFINE_CURVE 1,,,1,-0.0243, 0,12239 0.0243,126656.2705 0.0328,129456.0407 0.0412,133189.0676 0.0496,137322.0617 0.058,141321.7334 0.0665,146654.629 0.0749,150654.3007 0.0833,153320.7485 0.0917,155987.1963 0.1,157320.4202 0.109,158653.6441 0.117,159986.868 0.125,159986.868 0.134,159986.868 0.142,159986.868 0.151,159986.868 0.159,158653.6441 0.168,155987.1963 0.176,153320.7485 0.184,150654.3007 0.193,147987.8529 0.201,145321.4051 0.21,143988.1812 0.218,141321.7334 0.227,138655.2856 0.235,135988.8378 0.243,134655.6139 0.252,134655.6139 0.26,135988.8378 0.269,138655.2856 0.277,139988.5095 0.286,142654.9573 0.294,143988.1812 0.302,143988.1812 0.311,142654.9573 0.319,141321.7334 0.328,138655.2856 0.336,137322.0617 0.344,135988.8378 0.353,134655.6139 0.361,133322.39 0.37,133055.7452 0.378,132922.4228 0.387,132655.7781 0.395,131589.1989 0.403,130122.6526 0.412,129189.3959 0.42,128656.1064 0.429,128389.4616 0.437,127989.4944 0.446,127589.5272 0.454,127189.5601 0.462,126789.5929 0.471,125989.6586 0.479,125189.7242 0.488,124389.7899 0.496,123589.8555 0.505,123189.8884 *DEFINE_CURVE 2 0,0 1000,0 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ ICFD MESH KEYWORDS $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *MESH_BL 3 1 *MESH_BL_SYM 1 *MESH_BL_SYM 2 *MESH_BL_SYM 4 *MESH_BL_SYM 5 *MESH_BL_SYM 6 *MESH_VOLUME $# volid 10 $# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8 1 2 3 4 5 6 $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 $ $ $ DATABASE (OUTPUT) $ $ $ $---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 *ICFD_DATABASE_FLUX 1 *ICFD_DATABASE_FLUX 2 *ICFD_DATABASE_FLUX 4 *ICFD_DATABASE_FLUX 5 *ICFD_DATABASE_FLUX 6 *ICFD_DATABASE_TIMESTEP 1 *DATABASE_BINARY_D3PLOT $# dt lcdt beam npltc psetid &dt_plot *END
In this example, blood flows through an artery. The Carrreau non newtonian model has been chosen to model the blood. Windkessel type boundary conditions have been imposed on the different vessel outlets symbolizing the external blood load. When this boundary condition is used, the pressure will be imposed function of the total flux and some circuit parameters. In the electrical analog, pressure represents the scalar potential and flux the total current.